
Conserved quantities of generalized periodic box–ball systems constructed from the ndKP

equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 6531

(http://iopscience.iop.org/0305-4470/37/25/008)

Download details:

IP Address: 171.66.16.91

The article was downloaded on 02/06/2010 at 18:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/25
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 6531–6556 PII: S0305-4470(04)73420-4

Conserved quantities of generalized periodic box–ball
systems constructed from the ndKP equation

Jun Mada1, Makoto Idzumi2 and Tetsuji Tokihiro1

1 Graduate school of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba,
Tokyo 153-8914, Japan
2 Department of Mathematics, Faculty of Education, Shimane University, Matsue 690-8504,
Japan

Received 16 December 2003
Published 9 June 2004
Online at stacks.iop.org/JPhysA/37/6531
doi:10.1088/0305-4470/37/25/008

Abstract
We investigate periodic box–ball systems (PBBSs) with several kinds of balls
and box capacity greater than or equal to one. Conserved quantities of the
PBBSs are constructed from those of the nonautonomous discrete KP (ndKP)
equation using the Lax representation of the ndKP equation.

PACS numbers: 02.30.Ik, 05.45.Yv, 05.65.+b

1. Introduction

A cellular automaton (CA) is a discrete dynamical system consisting of regular arrays of
cells [1]. Each cell takes only a finite number of states and is updated in discrete time steps.
Although the updating rule is simple, CAs often exhibit very complicated time evolution
patterns and they have been investigated as good models for natural and/or social phenomena.
A box–ball system (BBS) is a filter-type CA which is expressed as a discrete dynamical system
of balls in an infinite array of boxes [2, 3]. One of the peculiar features of the BBS is that it is
actually an integrable CA and this for two reasons. One reason is that a BBS is obtained from
an integrable nonlinear equation through a limiting procedure called ultradiscretization [4, 5],
and the other reason is that it is regarded as an integrable lattice model at zero temperature
[6–8]. Accordingly, the BBS has soliton solutions and a sufficiently large number of conserved
quantities [9].

The periodic box–ball system (PBBS) is the BBS in which the updating rule is extended
to be compatible with a periodic boundary condition [10]. Let us consider a one-dimensional
array of N boxes. A periodic boundary condition is imposed by assuming that the Nth box
is adjacent to the first one. (We may imagine that the boxes are arranged in a circle.) The
capacity of the nth (1 � n � N) box is denoted by a positive integer θn. We suppose that
there are M kinds of balls distinguished by an integer index j (1 � j � M). Then, the rule
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Figure 1. Time evolution rule for PBBS.

for the time evolution from time step t to t + 1 is given as follows:

1. At each box, create the same number of copies of the balls with index 1.
2. Choose one of the copies arbitrarily and move it to the nearest box with an available space

to the right of it.
3. Choose one of the remaining copies and move it to the nearest available box on the right

of it.
4. Repeat the above procedure until all the copies have been moved.
5. Delete all the original balls with index 1.
6. Perform the same procedure for the balls with index 2.
7. Repeat this procedure successively until all of the balls are moved.

An example of the time evolution of the PBBS according to this rule is shown in figure 1.
Since the PBBS is composed of a finite number of boxes and balls, it can only take on a

finite number of patterns. Hence its trajectory is always periodic and a fundamental cycle, i.e.
the shortest period of the periodic motion, exists for any given initial state.

In the case where the box capacity is one everywhere and only one kind of ball exists, the
PBBS is obtained from the discrete Toda equation [11], which is a well-known integrable partial
difference equation, with a periodic boundary condition through a limiting procedure. Using
inverse ultradiscretization, the initial value problem of the PBBS is solvable by the inverse
scattering transform [12], and we can obtain the explicit formulae expressing the fundamental
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Figure 2. Young diagram corresponding to the conserved quantities of (#).

cycle for a given initial state of the PBBS [13]. Furthermore, using these formulae, we
can estimate the asymptotic behaviour of the fundamental cycles which shows an important
number theoretical aspect of the PBBS [14, 15]. One of the key elements underlying these
results is that we can construct the conserved quantities of the PBBS explicitly. Denoting a
vacant box by 0 and a filled box by 1, we obtain the 0, 1 sequence corresponding to a state of
the PBBS. (We regard the last entry of the sequence as adjacent to the first entry.) Then the
explicit algorithm to construct the conserved quantities is as follows [10, 16].

1. Let p1 be the number of 10 in the sequence.
2. Eliminate all the 10 in the original sequence and let p2 be the number of 10 in the new

sequence.
3. Repeat the above procedure until all the 1 are eliminated.
4. Then the decreasing positive integer sequence {p1, p2, p3, . . .} consists of the conserved

quantities.

For example, for the state

(#) 00 111 011 100 100 011 110 001 101 000 000

we have p1 = 6, and eliminating 10, we obtain a new sequence

0 011 110 001 110 010 000.

and p2 = 3. In a similar manner, we have p3 = 2, p4 = 2, p5 = 1. To see that these {pj } are
conserved, we evolve (#) by one time step

(#′) 00 000 100 011 011 100 001 110 010 111 100.

By applying the above algorithm again, we find the same integer sequence {pj } (j =
1, 2, . . . , 5).

Since the sequence p1p2 · · · is a decreasing positive integer sequence, we can associate
a Young diagram to it by regarding pj as the number of squares in the j th column of
the diagram. For example, the Young diagram corresponding to the state (#) is shown in
figure 2.

When we denote by Lj the length of the j th rows of the Young diagram, the decreasing
integer sequence {L1, L2, . . .} is another expression for the conserved quantities of the PBBS.
They are sometimes called the lengths of solitons [13], because in the case of an infinite
number of boxes (or for the original BBS), after sufficiently large time steps, the state of
the PBBS consists of solitons which are arranged according to the order of their lengths and
which move freely. We can prove that the length of the j th largest soliton among these freely
moving solitons coincides with Lj . Hence, for a given initial state, we can find the solitons
which constitute that state after sufficiently many time steps by constructing the corresponding
Young diagram. Note that the solitons of the PBBS can be defined for any state as shown in
[13]. We shall use this fact in section 7 to prove the correspondence between our results and
the previous ones.
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For a general PBBS with box capacity greater than one and several kinds of balls however,
we know only a few of its features, in part because we did not yet obtain a formula for the
conserved quantities. In this paper, we investigate the conserved quantities of the generalized
PBBS. In section 2, we obtain an ultradiscrete equation for the generalized PBBS. In
sections 3 and 4, we consider a reduction of the ndKP equation and its Lax representation,
and show that its ultradiscrete limit gives the ultradiscrete equation for the PBBS. Using these
results, we obtain a formula to calculate the conserved quantities of the PBBS in section 5. In
section 6, we treat the case with only one kind of ball but with arbitrary box capacities and give
an explicit expression for the conserved quantities, and, in the following section, prove that
they coincide with those expressed in terms of a Young diagram when all the box capacities
are one. Concluding remarks are given in section 8.

2. Periodic box–ball system

In order to describe the dynamics of the PBBS in more detail, we introduce a new
independent variable s (s ∈ Z). As any integer s can be uniquely expressed as s = Mt + j

(t ∈ Z, 1 � j � M), we denote by us
n the number of balls with index j ≡ s mod M in the nth

box at time step t ≡ [
s−1
M

]
, where [x] denotes the largest integer which does not exceed x. In

other words, the new time variable s is a refinement of the original time, indicating explicitly
when balls with index j will move.

We assume that θn and us
n satisfy the relation

N∑
n=1

θn −
M∑

j=1

N∑
n=1

uj
n �

N∑
n=1

uk
n (k = 1, 2, . . . ,M). (2.1)

The first and second terms of the left-hand side of (2.1) represent the number of spaces and
the number of balls in the PBBS respectively, hence the left-hand side is nothing but the total
number of free spaces of the PBBS. The right-hand side of (2.1) is the number of balls with
index k. Thus (2.1) requires the total number of free spaces of the PBBS to be larger than the
number of copies of any type of ball in the time evolution process.

Example 2.1. In figure 3, N = 5,M = 2, θ1 = θ2 = θ5 = 2, θ3 = θ4 = 1 and us
n are given

s = 1 : us=1
n=1 = 1 u1

2 = 1 u1
3 = 0 u1

4 = 0 u1
5 = 0

s = 2 : u2
1 = 0 u2

2 = 1 u2
3 = 1 u2

4 = 0 u2
5 = 0.
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Let us consider the process at time s, i.e., the movement of the balls with index j at time
step t where s = Mt + j ; we often use s instead of j , i.e. we treat the indices modulo M. If we
define κs

n, which denotes the number of spaces of the nth box at s, by

κs
n := θn − (

us
n + us−1

n + · · · + us−M+1
n

)
(2.2)

condition (2.1) is rewritten as
N∑

n=1

us−M
n �

N∑
n=1

κs−1
n . (2.3)

Since us−M
n is the number of balls with index s in the nth box at time s −1, if we introduce

x1 := max
[
0, us−M

n − κs−1
n+1

]
(2.4)

x1 will be the number of balls which overflow the (n + 1)th box, as shown in figure 4.
Hence x1 + us−M

n+1 balls will move in the next step. By the same idea, we define

x2 := max
[
0, x1 + us−M

n+1 − κs−1
n+2

]
x3 := max

[
0, x2 + us−M

n+2 − κs−1
n+3

]
...

xN−1 := max
[
0, xN−2 + us−M

n+N−2 − κs−1
n+N−1

]
.

(2.5)

Hence, us
n, which is the number of balls going into the nth box at time s as shown in

figure 5, is given by
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us
n = min

[
κs−1

n , xN−1 + us−M
n+N−1

]
= κs−1

n − max
[
0, κs−1

n − xN−1 − us−M
n+N−1

]
. (2.6)

Using (2.3), (2.4), (2.5), (2.6) and associativity and distributivity of the operations ‘max’
and ‘+’, i.e., for ∀a, b, c ∈ R,

max[a, max[b, c]] = max[a, b, c] a + max[b, c] = max[a + b, a + c]

we have the following theorem.

Theorem 2.1. The time evolution of the PBBS is described by an ultradiscrete equation:

us
n − κs−1

n = α − max[0, α̃] (2.7)

where

α = max

us−M
n−1 − κs−1

n , us−M
n−1 + us−M

n−2 − κs−1
n − κs−1

n−1, . . . ,

N∑
j=1

us−M
n−j − κs−1

n+1−j

 (2.8)

α̃ = max

us−M
n−1 − κs−1

n , us−M
n−1 + us−M

n−2 − κs−1
n − κs−1

n−1, . . . ,

N−1∑
j=1

us−M
n−j − κs−1

n+1−j

 . (2.9)

3. Reduction of the ndKP equation and its Lax representation

The nonautonomous discrete KP (ndKP) equation [17] is obtained from the generating formula
of the KP hierarchy [18, 19]. For g ∈ GL∞, we define a tau function τ(x) and a wavefunction
ψλ(x) as

τ(x) := 〈vac| eH(x)g|vac〉 (3.1)

ψλ(x) := τ
(
x − ε

(
1
λ

))
τ(x)

eξ(x,λ) (3.2)

where

x = (x1, x2, x3, . . .) ε(1/λ) := (1/λ, 1/(2λ2), 1/(3λ3), 1/(4λ4), . . .)

ξ(x, λ) :=
∞∑

n=1

xnλ
n.

To obtain the ndKP equation, we put

x =
l∑
i

ε

(
1

a(i)

)
+

m∑
j

ε

(
1

b(j)

)
+

n∑
k

ε

(
1

c(k)

)
. (3.3)

Here the symbol
∑l

i denotes the convention

l∑
i

xi :=


∑l

i=1 xi l � 1
0 l = 0

−∑0
i=l+1 xi l � −1.

Then the tau function τ(l,m, n) and the wavefunction ψλ(l,m, n) for the ndKP equation is
given as



Conserved quantities of generalized PBBSs constructed from the ndKP equation 6537

τ(l,m, n) := τ(x) (3.4)

ψλ(l,m, n) := ψλ(x) (3.5)

where x is given in (3.3). Then, from the generating formula of the KP hierarchy, we have the
Lax representation

ψlm = 1
bm−al

τlτm

ττlm
[bmψl − alψm]

ψmn = 1
cn−bm

τmτn

ττmn
[cnψm − bmψn]

ψnl = 1
al−cn

τnτl

τ τnl
[alψn − cnψl]

(3.6)

and the compatibility condition of (3.6) gives the ndKP equation

(bm − cn)τlτmn + (cn − al)τmτnl + (al − bm)τnτlm = 0. (3.7)

Here we use the abbreviations τl ≡ τ(l + 1,m, n), τlm ≡ τ(l + 1,m + 1, n), ψl ≡
ψλ(l + 1,m, n), τl′ ≡ τ(l − 1,m, n), τl′m′ ≡ τ(l − 1,m − 1, n), al ≡ a(l + 1) etc.

In order to relate the ndKP equation to the PBBS, we take a(l) = 0, b(m) = 1, c(n) =
1 + δn and impose the following constraint on τ(l,m, n):

τ(l,m, n) = τ(l − M,m − 1, n). (3.8)

If we set l + 1 = s,m = 0 and σ s
n := τ(s − 1, 0, n), (3.7) turns into

−δn+1σ
s+1
n σ s−M

n+1 + (1 + δn+1)σ
s−M
n σ s+1

n+1 − σ s
n+1σ

s−M+1
n = 0. (3.9)

To impose the above conditions on (3.6), we have to rescale the wavefunction due to the
condition a(l) = 0:

ψ ′
λ := lim

a→0

1

(−a)l
ψλ.

Then, from (3.2) and (3.8), ψ ′
λ(l,m, n) satisfies

ψ ′
λ(l,m, n) = 1

λM(1 − λ)
ψ ′

λ(l − M,m − 1, n) (3.10)

and (3.6) turns into
ψ ′

lm = τlτm

ττlm
[ψ ′

l + ψ ′
m]

ψ ′
mn = 1

δn+1

τmτn

ττmn
[(1 + δn+1)ψ

′
m − ψ ′

n]

ψ ′
nl = 1

1+δn+1

τnτl

ττnl
[ψ ′

n − (1 + δn+1)ψ
′
l ].

(3.11)

If we define ϕs
n := ψ ′(s − 1, 0, n), we have

ϕs+1
n = As

n

[
�ϕs+M+1

n + ϕs
n

]
ϕs

n+1 = Bs
n

[(
1 + 1

δn+1

)
ϕs

n + 1
δn+1

�ϕs+M
n+1

]
ϕs+1

n+1 = Us
n

[
1

1+δn+1
ϕs

n+1 + ϕs+1
n

] (3.12)

where

� := λM(1 − λ) As
n = σ s+M+1

n σ s
n

σ s+M
n σ s+1

n

Bs
n = σ s

nσ s+M
n+1

σ s+M
n σ s

n+1

Us
n = σ s

n+1σ
s+1
n

σ s
nσ s+1

n+1

.

The compatibility condition of (3.12) gives

1

As−1
n+1

− 1 + δn+1

Us−1
n

= −δn+1

Bs
n

(3.13)

which is, of course, equivalent to (3.9).
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4. From the ndKP equation to the PBBS

We will show that the ultradiscrete limit of (3.13) coincides with the PBBS. First we express
As

n and Bs
n in terms of Us

n as

Bs
n = σ s

nσ s+M
n+1

σ s
n+1σ

s+M
n

= σ s
nσ s+1

n+1

σ s
n+1σ

s+1
n

· · · σ s+M−1
n σ s+M

n+1

σ s+M−1
n+1 σ s+M

n

= (
Us

nU
s+1
n · · · Us+M−1

n

)−1

=
M−1∏

j=0

Us+M−j−1
n

−1

and

As−1
n+1 =

(
1 + δn+1

Us−1
n

− δn+1

Bs
n

)−1

=
1 + δn+1

Us−1
n

− δn+1

M−1∏
j=0

Us+M−j−1
n

−1

= Us−1
n

1 + δn+1 − δn+1

M∏
j=0

Us+M−j−1
n

−1

. (4.1)

In analogy with (2.2), we define a new variable Ks
n by

1

Ks
n

:= δn+1 ·
M∏

j=1

Us−j+1
n .

Then (4.1) turns into

As−1
n+1 = Us−1

n

(
1 + δn+1 − Us+M−1

n

Ks+M−2
n

)−1

.

Since

As−1
n+1

As−1
n

= σ s+M
n+1 σ s−1

n+1

σ s+M−1
n+1 σ s

n+1

· σ s+M−1
n σ s

n

σ s+M
n σ s−1

n

= σ s−1
n+1 σ s

n

σ s−1
n σ s

n+1

· σ s+M−1
n σ s+M

n+1

σ s+M−1
n+1 σ s+M

n

= Us−1
n

Us+M−1
n

we obtain

Us
n

Us+M
n

= Us
n

Us
n−1

(
1 + δn − Us+M

n−1

Ks+M−1
n−1

)(
1 + δn+1 − Us+M

n

Ks+M−1
n

)−1

which is equivalent to

Us+M
n

Ks+M−1
n

= 1 + δn+1

1 + Ks+M−1
n

Us
n−1

(
1 + δn − Us+M

n−1

Ks+M−1
n−1

) .
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If we set Ũ s
n := Us

n

/
(1 + δn+1), we have

Ũ s+M
n

Ks+M−1
n

= 1

1 + Ks+M−1
n

Ũ s
n−1

(
1 − Ũ s+M

n−1

Ks+M−1
n−1

) . (4.2)

Now we impose a periodic condition on Us
n :

Us
n = Us

n+N. (4.3)

Solving (4.2) with respect to Ũ s+M
n

Ks+M−1
n

, we obtain

Ũ s+M
n

Ks+M−1
n

= χs
n

1 + χ̃ s
n

(4.4)

where

χs
n = Ũ s

n−1

Ks+M−1
n

+
Ũ s

n−1Ũ
s
n−2

Ks+M−1
n Ks+M−1

n−1

+ · · · +
Ũ s

n−1 · · · Ũ s
n−N

Ks+M−1
n · · ·Ks+M−1

n−N+1

(4.5)

χ̃ s
n = Ũ s

n−1

Ks+M−1
n

+
Ũ s

n−1Ũ
s
n−2

Ks+M−1
n Ks+M−1

n−1

+ · · · +
Ũ s

n−1 · · · Ũ s
n−N+1

Ks+M−1
n · · ·Ks+M−1

n−N+2

. (4.6)

To take the ultradiscrete limit, we put Us
n = eus

n/ε, Ks
n = eκs

n/ε, 1/δn+1 = eθn/ε . Since

Ũ s
n = Us

n

1 + δn+1
= eus

n/ε · (1 + e−θn/ε)−1

we have that the ultradiscrete of Ũ s
n is nothing but the variable us

n

lim
ε→0+

ε log Ũ s
n = us

n − max(0,−θn) = us
n.

Therefore one can easily see that the ultradiscrete limit of (4.4) turns into (2.7).
In conclusion, we have proved

Theorem 4.1. The ultradiscrete limit of the constrained ndKP equation (3.9) (or (3.13))
with the periodic boundary condition (4.3) coincides with the time evolution equation of the
PBBS (2.7).

5. Conserved quantities of the PBBS

In this section, we consider the conserved quantities of the ndKP equation (3.13) with respect
to the time variable s. Taking ultradiscrete limits of them, we will obtain the conserved
quantities of the PBBS.

We imposed the periodic boundary condition (4.3) for Us
n . Accordingly we assume a

boundary condition for the wavefunction ϕs
n:

ϕs
n = ηϕs

n+N . (5.1)

Here η is a parameter independent of �. Equations (3.12) and (5.1) yield{
L̃(s)ϕs = �ϕs+M

M̃(s + 1)ϕs+1 = ϕs
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where

L̃(s − M) :=



− δ1

Bs−M
N

(1 + δ1)η

1 + δ2 − δ2

Bs−M
1

1 + δ3 − δ3

Bs−M
2

. . .
. . .

1 + δN − δN

Bs−M
N−1



=



− 1
Ks−1

N

(1 + δ1)η

1 + δ2 − 1
Ks−1

1

1 + δ3 − 1
Ks−1

2

. . .
. . .

1 + δN − 1
Ks−1

N−1


(5.2)

M̃(s) :=



1+δ1

Us−1
N

−(1 + δ1)η

−(1 + δ2)
1+δ2

Us−1
1

−(1 + δ3)
1+δ3

Us−1
2

. . .
. . .

−(1 + δN) 1+δN

Us−1
N−1


(5.3)

and ϕs := t
(
ϕs

1, ϕ
s
2, . . . , ϕ

s
N

)
. Hence, by putting

L̂(M; s) = L̃(s − M)M̃(s − M + 1)M̃(s − M + 2) · · · M̃(s) (5.4)

we obtain {
L̂(M; s)ϕs = �ϕs

M̃(s + 1)ϕs+1 = ϕs .
(5.5)

From (5.5), for arbitrary � ∈ C and the corresponding wavefunction ϕs ≡ ϕs
�, we have

L̂(M; s + 1)M̃−1(s + 1)ϕs = M̃−1(s + 1)L̂(M; s)ϕs

which yields

L̂(M; s + 1)M̃−1(s + 1) = M̃−1(s + 1)L̂(M; s)

or equivalently

L̂(M; s + 1) = M̃−1(s + 1)L̂(M; s)M̃(s + 1). (5.6)

Hence

det(λI + L̂(M; s + 1)) = det(λI + M̃−1(s + 1)L̂(M; s)M̃(s + 1))

= det(λI + L̂(M; s))

where I is the N × N unit matrix. Therefore, when we expand the determinant with respect
to λ

det(λI + L̂(M; s)) = λN + eN−1λ
N−1 + eN−2λ

N−2 + · · · + e1λ + e0 (5.7)
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the coefficients ek = ek

({
Us

n

})
(k = 0, 1, . . . , N − 1) are conserved in time s. Note that ek

is equal to the (N − k)th fundamental symmetric function of the eigenvalues of the matrix
L̂(M; s). In the ultradiscrete limit, ek will be converted into a conserved quantity of the PBBS.

Remark 5.1. As before, we introduce Ũ s
n = Us

n

/
(1 + δn+1). For N � M + 2, the (n,m)

element of L̂(M; s) is

(i) if m = n + N − M − 1 (mod N),{
(−1)Mη · ∏M+1

i=1 (1 + δn+N−M+i−1) (1 � n � M + 1)

(−1)M
∏M+1

i=1 (1 + δn+N−M+i−1) (otherwise)

(ii) if m = n + N − M (mod N),
(−1)M+1η ·

(
1

Ks−1
n−1

+
∑M

j=1
1

Ũ
s−j

n−M+j−2

)
· ∏M

i=1(1 + δn+N−M+i ) (1 � n � M)

(−1)M+1

(
1

Ks−1
n−1

+
∑M

j=1
1

Ũ
s−j

n−M+j−2

)
· ∏M

i=1(1 + δn+N−M+i ) (otherwise)

(iii) if m = n + N − M + k − 1 (mod N) (k = 2, 3, . . . , M),

(−1)M+kη · ∏M−k+1
i=1 (1 + δn+N−M+k+i−1)

×
(

1
Ks−1

n−1

∑
1�j1<j2<···<jk−1�M

1

Ũ
s−j1
n−M+j1+k−3Ũ

s−j2
n−M+j2+k−4···Ũ

s−jk−1
n−M+jk−1−1

+
∑

1�j1<j2<···<jk�M
1

Ũ
s−j1
n−M+j1+k−3Ũ

s−j2
n−M+j2+k−4···Ũ

s−jk
n−M+jk−2

)
(1 � n � M − k + 1)

(−1)M+k
∏M−k+1

i=1 (1 + δn+N−M+k+i−1)

×
(

1
Ks−1

n−1

∑
1�j1<j2<···<jk−1�M

1

Ũ
s−j1
n−M+j1+k−3Ũ

s−j2
n−M+j2+k−4···Ũ

s−jk−1
n−M+jk−1−1

+
∑

1�j1<j2<···<jk�M
1

Ũ
s−j1
n−M+j1+k−3Ũ

s−j2
n−M+j2+k−4···Ũ

s−jk
n−M+jk−2

)
(otherwise)

(iv) if m = n,− 1
�n−1

where

�n := Ks−1
n ·

M∏
j=1

Ũ s−M+j−1
n = 1

δn+1

(
1

1 + δn+1

)M

(v) othewise, 0.

To see this, it is convenient to use the formula

L̂(M; s) = (−D̃K(s − M) + ϒ̃)(D̃Ũ (s − M + 1) − ϒ̃)

× (D̃Ũ (s − M + 2) − ϒ̃) · · · (D̃Ũ (s) − ϒ̃)

= −D̃K(s − M)D̃Ũ (s − M + 1) · · · D̃Ũ (s)

+ (D̃K(s − M)D̃Ũ (s − M + 1) · · · D̃Ũ (s − 1)ϒ̃

+ D̃K(s − M)D̃Ũ (s − M + 1) · · · D̃Ũ (s − 2)ϒ̃D̃Ũ (s)

+ · · · + ϒ̃D̃Ũ (s − M + 1) · · · D̃Ũ (s)) + · · · + (−1)Mϒ̃M+1



6542 J Mada et al

where

D̃K(s − M) :=



1
Ks−1

N

1
Ks−1

1
1

Ks−1
2

. . .
1

Ks−1
N−1



D̃Ũ (s) :=



1
Ũ s−1

N

1
Ũ s−1

1
1

Ũ s−1
2

. . .
1

Ũ s−1
N−1



ϒ̃ :=


(1 + δ1) · η

1 + δ2

1 + δ3

. . .

1 + δN

 .

In this paper, we will mainly treat the case M = 1 and we do not consider the case
N < M + 2 which is almost trivial.

6. Conserved quantities of the ndKP equation in the case M = 1

Hereafter, we restrict ourselves to the case M = 1. In this case the conserved quantity ek

(k = 1, 2, . . . , N) is the coefficient of λk in the expansion of det(λI + L̂(1; s)). First we have
the following lemma.

Lemma 6.1. Let

ϒ̃0 :=



∏N
j=1(1 + δj ) · η

1
1

. . .

1


and

L̂0(M; s) := (−D̃K(s − M) + ϒ̃0)(D̃Ũ (s − M + 1) − ϒ̃0)

× (D̃Ũ (s − M + 2) − ϒ̃0) · · · (D̃Ũ (s) − ϒ̃0).

Then, it holds that

det(λI + L̂(M; s)) = det(λI + L̂0(M; s)). (6.1)

This lemma follows immediately from the identity

ϒ̃0 = (D̃�)−1ϒ̃D̃�
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where

D̃� :=


1

1 + δ2

(1 + δ2)(1 + δ3)

. . . ∏N
j=2(1 + δj )

 .

From lemma 6.1 we find

det(λI + L̂(1; s)) = det(λI + L̂0(1; s)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 −η · � η · bN�

b1 a2 −η · �

−1 b2
. . .

−1
. . .

. . .

. . .
. . . aN−1

−1 bN−1 aN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(6.2)

where

an := λ − 1

�n−1
bn := 1

Ks−1
n

+
1

Ũ s−1
n−1

� :=
N∏

j=1

(1 + δj ). (6.3)

Expanding the determinant (6.2) yields

det(λI + L̂(1; s)) =
N∏

n=1

(
λ − 1

�n

)
+ (−1)N+1η · BN� + (−1)Nη2�2 (6.4)

where

BN := B(1, N) +

(
λ − 1

�N

)
B(2, N − 1) (6.5)

and

B(m, n) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bm am+1

−1 bm+1 am+2

−1 bm+2
. . .

−1
. . .

. . .

. . .
. . . an−1

. . . bn−1 an

−1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(m < n).

Here we have used a relation

B(m, n) =
(

1

Ks−1
n

+
1

Ũ s−1
n−1

)
B(m, n − 1) +

(
λ − 1

�n−1

)
B(m, n − 2). (6.6)

Using (6.6) recursively, we find that

B(1, N) =
∑

(i1,...,ip,j1,...,jq )

(
1

Ki1

+
1

Ũi1−1

)
· · ·

(
1

Kip

+
1

Ũip−1

)(
λ − 1

�j1

)
· · ·

(
λ − 1

�jq

)
(6.7)
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where the summation is over all p + q tuples (i1, . . . , ip, j1, . . . , jq) of integers which satisfy
the following condition:

p + 2q = N p � 0 q � 0
1 � i1 < i2 < · · · < ip � N

1 � j1 < j2 < · · · < jq � N − 1
i1, i2, . . . , ip,

j1, j1 + 1, j2, j2 + 1, . . . , jq, jq + 1 are distinct integers.

(6.8)

Hereafter we put Kn ≡ Ks−1
n and Ũn ≡ Ũ s−1

n for simplicity.
In a similar manner, we have an expression for B(2, N − 1) and thus we obtain

BN =
∑

(i1,...,ip,j1,...,jq )

(
1

Ki1

+
1

Ũi1−1

)
· · ·

(
1

Kip

+
1

Ũip−1

)(
λ − 1

�j1

)
· · ·

(
λ − 1

�jq

)
(6.9)

where the summation is over all p + q tuples (i1, . . . , ip, j1, . . . , jq) of integers satisfying
p + 2q = N p � 0 q � 0
1 � i1 < i2 < · · · < ip � N

1 � j1 < j2 < · · · < jq � N

i1, i2, . . . , ip,

j1, j1 + 1, j2, j2 + 1, . . . , jq, jq + 1 are distinct modulo N.

(6.10)

The main theorem of this section is

Theorem 6.1.

BN =

∑ N

2 −1
k=0 fkλ

k + 2λ
N
2 (N : even)∑ N−1

2
k=0 fkλ

k (N : odd )

(6.11)

where

fk =
∑

(x1,x2,...,xN )∈KN;N−2k

x1x2 · · · xN (6.12)

and, for p � 1,

KN;p :=



xn ∈ {1/Kn, 1/Ũn, 1} for each n, and
�{n | 1 � n � N, xn 	= 1} = p.

Let xi1 , xi2 , . . . , xip (i1 < i2 < · · · < ip)

be the non-1 elements; these then satisfy
the following conditions: for each m < p

(x1, x2, . . . , xN) (i) If im+1 − im is odd then(
xim, xim+1

) = (
1/Kim, 1/Kim+1

)
or

(
1/Ũim, 1/Ũim+1

)
.

(ii) Otherwise(
xim, xim+1

) = (
1/Kim, 1/Ũim+1

)
or

(
1/Ũim, 1/Kim+1

)
.



.

The proof goes as follows.
For simplicity, put αn = 1/Kn, βn = 1/Ũn−1; thus

B(1, N) =
∑

(i1,...,ip,j1,...,jq )

(
λ − αj1βj1+1

) · · · (λ − αjq
βjq+1

)(
αi1 + βi1

) · · · (αip + βip

)
. (6.13)



Conserved quantities of generalized PBBSs constructed from the ndKP equation 6545

We again need to introduce some more notation. For p � 1,

BN;p :=



xn ∈ {αn, βn, 1} for each n, and
�{n | 1 � n � N, xn 	= 1} = p.

(x1, x2, . . . , xN) Let xi1 , xi2 , . . . , xip (i1 < i2 < · · · < ip)

be the non-1 elements; then, for each m < p

im+1 − im is odd, and if im+1 − im = 1
then

(
xim, xim+1

) 	= (
αim, βim+1

)
.


.

Define ι1, ιp : BN;p → {1, 2, . . . , N} by ι1(x1, x2, . . . , xN) = i1 and ιp(x1, x2, . . . , xN) = ip
when xi1 , xi2 , . . . , xip (i1 < i2 < · · · < ip) are the non-1 elements in (x1, x2, . . . , xN). For
p � 1,

ON;p := {x ∈ BN;p | ι1(x) is an odd integer} (6.14)

EN;p := {x ∈ BN;p | ι1(x) is an even integer} (6.15)

PN;p :=


N + ι1(x) − ιp(x) is an odd integer
x ∈ BN;p and if N + ι1(x) − ιp(x) = 1(

xιp(x), xι1(x)

) 	= (
αιp(x), βι1(x)

)
 . (6.16)

For B′ ⊂ BN;p, define ξ(B′) by

ξ(B′) :=
∑

(x1,x2,...,xN )∈B′
x1x2 · · · xN . (6.17)

Lemma 6.2.

B(1, N) =

∑ N

2 −1
q=0 ξ(ON;N−2q) · λq + λ

N
2 (N : even)∑ N−1

2
q=0 ξ(ON;N−2q) · λq (N : odd ).

(6.18)

Proof. We prove (6.18) by induction on N.

(i) N = 2: By (6.13)

B(1, 2) = (α1 + β1)(α2 + β2) + (λ − α1β2)

= λ + (α1α2 + β1α2 + β1β2).

On the other hand,

ξ(O2;2) = α1α2 + β1α2 + β1β2.

Hence (6.18) is true for N = 2.
(ii) N = 3: by (6.13)

B(1, 3) = (α1 + β1)(α2 + β2)(α3 + β3) + (λ − α1β2)(α3 + β3) + (λ − α2β3)(α1 + β1)

= {(α1 + β1) + (α3 + β3)}λ + (α1α2α3 + β1α2α3 + β1β2α3 + β1β2β3).

On the other hand,

ξ(O3;1) = (α1 + β1) + (α3 + β3)

ξ(O3;3) = α1α2α3 + β1α2α3 + β1β2α3 + β1β2β3.

Hence (6.18) is true for N = 3.
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(iii) Suppose that (6.18) holds up to N − 1 (N � 4). By (6.6) and the induction hypothesis,
if N is even then

B(1, N) = (αN + βN)ξ(ON−1;N−1) − αN−1βN · ξ(ON−2;N−2)

+

N
2 −2∑
q=1

{(αN + βN)ξ(ON−1;N−2q−1) + ξ(ON−2;N−2q)

−αN−1βN · ξ(ON−2;N−2q−2)}λq + {(αN + βN)ξ(ON−1;1)

+ ξ(ON−2;2) − αN−1βN }λN
2 −1 + λ

N
2 . (6.19)

Since ON;N−2q for 1 � q � N
2 − 2 can be decomposed

ON;N−2q = {(x1, x2, . . . , xN−2, 1, 1) | (x1, x2, . . . , xN−2) ∈ ON−2;N−2q}
� {(x1, x2, . . . , xN−1, αN) | (x1, x2, . . . , xN−1) ∈ ON−1;N−2q−1}
� ({(x1, x2, . . . , xN−1, βN) | (x1, x2, . . . , xN−1) ∈ ON−1;N−2q−1}
\ {(x1, x2, . . . , αN−1, βN) | (x1, x2, . . . , xN−2) ∈ ON−2;N−2q−2})

we have

ξ(ON;N−2q) = ξ(ON−2;N−2q) + ξ(ON−1;N−2q−1) · αN

+ ξ(ON−1;N−2q−1) · βN − ξ(ON−2;N−2q−2) · αN−1βN. (6.20)

Hence for 1 � q � N
2 − 2 the coefficient of λq in (6.19) is ξ(ON;N−2q). Similarly, we

can show that the coefficient of λq is ξ(ON;N−2q) for q = 0, N
2 − 1.

When N is odd, we have (6.18) in a similar manner.
Finally, (6.18) holds for all N � 2 by induction. �

Lemma 6.3.

B(2, N − 1) =

∑ N

2 −2
q=0 ξ(EN−1;N−2q−2) · λq + λ

N
2 −1 (N : even)∑ N−1

2 −1
q=0 ξ(EN−1;N−2q−2) · λq (N : odd).

(6.21)

Proof. B(2, N − 1) is obtained from B(1, N − 2) by shifting all subscripts of elements by
one. Therefore, by

B(1, N − 2) =

∑ N

2 −2
q=0 ξ(ON−2;N−2q−2) · λq + λ

N
2 −1 (N : even)∑ N−1

2 −1
q=0 ξ(ON−2;N−2q−2) · λq (N : odd)

we obtain (6.21). �

Using these results, we obtain the following lemma for BN .

Lemma 6.4.

BN =

∑ N

2 −1
q=0 ξ(PN;N−2q) · λq + 2λ

N
2 (N : even)∑ N−1

2
q=0 ξ(PN;N−2q) · λq (N : odd)

(6.22)
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Proof. By (6.5), (6.18) and (6.21), if N is even then

BN = ξ(ON;N) − αNβ1 · ξ(EN−1;N−2) +

N
2 −2∑
q=1

{ξ(ON;N−2q) + ξ(EN−1;N−2q)

−αNβ1 · ξ(EN−1;N−2q−2)}λq + {ξ(ON;2) + ξ(EN−1;2) − αNβ1}λN
2 −1 + 2λ

N
2 .

(6.23)

Since PN;N−2q for 1 � q � N
2 − 2 is decomposed as

PN;N−2q = (ON;N−2q\{(β1, x2, . . . , xN−1, αN) | (1, x2, . . . , xN−1) ∈ EN−1;N−2q−2})
� EN;N−2q

we find

ξ(PN;N−2q) = ξ(ON;N−2q) + ξ(EN;N−2q) − β1 · ξ(EN−1;N−2q−2) · αN. (6.24)

Since

EN;N−2q = {(x1, x2, . . . , xN−1, 1) | (x1, x2, . . . , xN−1) ∈ EN−1;N−2q}
we have

ξ(EN;N−2q) = ξ(EN−1;N−2q).

Hence, the rhs of (6.24) coincides with the coefficient of λq and we have shown that for
1 � q � N

2 − 2 the coefficient of λq in (6.23) is ξ(PN;N−2q). In a similar way, we can show
that the coefficient of λq is ξ(PN;N−2q) for q = 0, N

2 − 1 respectively.
In the case that N is odd, we have (6.22) in a similar manner. �

Rewriting lemma 6.4 in terms of 1/Kn and 1/Ũn (instead of αn and βn+1) immediately
gives theorem 6.1.

7. Conserved quantities of the PBBS for M = 1

In this section, we investigate the conserved quantities of the PBBS for M = 1 constructed
from the conserved quantities of the ndKP equation.

From (6.4) and (6.11), we have

det(λI + L̂(1; s))

=

∏N

n=1

(
λ − 1

�n

)
+ (−1)N+1η · (∑ N

2 −1
k=0 fkλ

k + 2λ
N
2
)
� + (−1)Nη2�2 (N : even)∏N

n=1

(
λ − 1

�n

)
+ (−1)N+1η · (∑ N−1

2
k=0 fkλ

k
)
� + (−1)Nη2�2 (N : odd).

(7.1)

By expanding (7.1) in terms of λ, we find

(i) if N is even,

ek =



(−1)N 1
�1···�N

+ (−1)Nη2�2

+ (−1)N+1η · ( 1
Ũ1···ŨN

+ 1
K1···KN

)
� (k = 0)

(−1)k̄
∑

1�n1<···<nk̄�N
1

�n1 ···�nk̄

+ (−1)N+1η · fk� (0 < k < N/2, k ∈ Z)

(−1)k̄
∑

1�n1<···<nk̄�N
1

�n1 ···�nk̄

+ (−1)N+12η · � (k = N/2)

(−1)k̄
∑

1�n1<···<nk̄�N
1

�n1 ···�nk̄

(N/2 < k � N, k ∈ Z)
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(ii) if N is odd

ek =


(−1)N 1

�1···�N
+ (−1)Nη2�2

+ (−1)N+1η · ( 1
Ũ1···ŨN

+ 1
K1···KN

)
� (k = 0)

(−1)k̄
∑

1�n1<···<nk̄�N
1

�n1 ···�nk̄

+ (−1)N+1η · fk� (0 < k < N/2, k ∈ Z)

(−1)k̄
∑

1�n1<···<nk̄�N
1

�n1 ···�nk̄

(N/2 < k � N, k ∈ Z)

where k̄ := N − k.
Now we consider the ultradiscrete limit of ek . Since

− lim
ε→+0

ε log

 ∑
1�n1<···<nk̄�N

1

�n1 · · · �nk̄

 = − lim
ε→+0

ε

× log
∑

1�n1<···<nk̄�N

exp
(−(

θn1 + · · · + θnk̄

)/
ε
)(

1 + exp
(−(θn1 + · · · + θnk̄

)/ε
))

= −max
{ − (

θn1 + · · · + θnk̄

) | 1 � n1 < · · · < nk̄ � N
}

= min
{
θn1 + · · · + θnk̄

∣∣ 1 � n1 < · · · < nk̄ � N
}
. (7.2)

and θn is the capacity of the box, the ultradiscrete limits of ek give trivial conserved quantities
for N/2 � k � N, k ∈ Z. We are not interested in these.

Let e
[i]
k be the coefficient of ηi in ek . As mentioned before, η is an independent parameter

and, therefore, e
[i]
k itself is conserved in time. When 0 < k < N/2, k ∈ Z, the ultradiscrete

limits corresponding to e
[0]
k and e

[1]
k are given by

ue
[0]
k := − lim

ε→+0
ε log(−1)k̄e

[0]
k

= − lim
ε→+0

ε log

 ∑
1�n1<···<nk̄�N

1

�n1 · · · �nk̄

 (7.3)

ue
[1]
k := − lim

ε→+0
ε log(−1)N+1e

[1]
k

= − lim
ε→+0

ε log fk�. (7.4)

The conserved quantity ue
[0]
k is trivial, and we will therefore only pay attention to ue

[1]
k .

According to theorem 6.1, we define the set
Fk := {

x1 + x2 + · · · + xN

∣∣ (x1, x2, . . . , xN) ∈ K(κn,un,0)

N;N−2k

}
(7.5)

where
K(κn,un,0)

N;N−2k ≡ KN;N−2k | 1/Kn→κn,1/Ũn→un,1→0.

Since

lim
ε→+0

ε log � = lim
ε→+0

ε log
N∏

j=1

(1 + e−θj /ε) =
N∑

j=1

max{0,−θj }

= 0

and limε→+0 ε log Ũn = un, ue
[1]
k is given by

ue
[1]
k = min Fk. (7.6)

Here min Fk denotes the minimum element in the set Fk .
In the case k = 0, the ultradiscrete limits of e

[i]
0 (i = 0, 1, 2) do not give nontrivial

conserved quantities.
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Next we will show that ue
[1]
k (7.6) coincides with the conserved quantities given in [13]

when ∀n θn = 1, i.e., all the boxes have capacity one. Our aim is to prove theorem 7.1. For
this purpose we have to prepare several lemmas and propositions.

We denote by p a 01 sequence corresponding to a state of the PBBS. Due to the periodic
boundary condition of the PBBS, the last entry of p is regarded as being adjacent to the first
one. We assume that the state has np solitons, meaning that p contains np sequences of ‘1’ or
equivalently the same number of sequences of ‘0’.

We also consider a sequence of ‘b’, ‘w’ and ‘φ’ and call it a bwφ sequence. In a bwφ

sequence, the last entry should be regarded as being adjacent to the first entry too. As shown
below, the letters ‘b’, ‘w’ and ‘φ’ correspond to un, κn and 0 respectively.

Let IN;N−2k be the set of bwφ sequences of length N defined by

IN;N−2k := {
x1x2 · · · xN

∣∣ (x1, x2, . . . , xN) ∈ K(w,b,φ)

N;N−2k

}
where

K(w,b,φ)

N;N−2k ≡ KN;N−2k

∣∣
1/Kn→w,1/Ũn→b,1→φ.

Note that a bwφ sequence ∈ IN;N−2k contains 2k ‘φ’ (hence it contains N − 2k ‘b’ and ‘w’)
and that there are neither consecutive sequences bw nor wb.

Suppose that pn (pn ∈ {0, 1}) is the nth element of p of length N and qn (qn ∈ {b,w, φ})
is the nth element of a bwφ sequence b ∈ IN;N−2k . Then we define gp(b) by

gp(b) :=
N∑

n=1

[pn, qn] (7.7)

where [· · · , · · ·] is the map:

{0, 1} × {b,w, φ} → {0, 1}
given by

[0, b] = 0 [0, w] = 1 [0, φ] = 0

[1, b] = 1 [1, w] = 0 [1, φ] = 0.

Remark 7.1. If we identify un, κn and 0 with ‘b’, ‘w’ and ‘φ’ respectively, we find that ue
[1]
k

for a state p is given as

ue
[1]
k = min Fk = min

b∈IN;N−2k

gp(b). (7.8)

A bwφ sequence is composed of consecutive ‘b’, ‘w’ and ‘φ’. We shall call such a disjoint
sequence of one kind of letter a band. We sometimes write a b-band (w-band, φ-band) instead
of a band of letters ‘b’, ‘w’, ‘φ’.

Example 7.1. For N = 22, k = 5, a bwφ-sequence b ∈ IN;N−2k

b = bbφwwwφφwwwφφφbbφφφφbb

consists of eight bands: ‘bbbb’, ‘φ’, ‘www’, ‘φφ’, ‘www’, ‘φφφ’, ‘bb’ and ‘φφφφ’. (Recall
that the last entry is adjacent to the first one.) Note that the number of ‘φ’ is 2k = 10.

Using the notion of bands, we define the sets M
(N)
k (k = 1, 2, . . . , N) as

M
(N)
k :=


xi ∈ {b,w} (i = 1, 2, . . . , N)

x1x2 · · · xN x1x2 · · · xN consists of
k b-bands and k w-bands.

 .
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We also define M
(N)
0 := {bb · · · b,ww · · · w}. Note that the elements of M

(N)
k do not contain

a letter ‘φ’. Hence the number of bands of ‘b’ is equal to that of ‘w’.
For a given a ∈ M

(N)
k , there are 2k boundaries between the bands. We denote by a〈+φ〉 the

bwφ sequence which is constructed from a by replacing each of the 2k letters at the right of
the boundaries with ‘φ’.

Example 7.2. For N = 20 and k = 4,

a = bbbbwwwbwbwbbwwwbbbb ∈ M4

has eight boundaries. It yields

a〈+φ〉 = bbbbφwwφφφφφbφwwφbbb ∈ IN;N−2k = I20,12.

Since the number of boundaries in a is 2k and an odd number of ‘φ’ is inserted between
the bands in a〈+φ〉, we have the following lemma 7.1.

Lemma 7.1. a〈+φ〉 ∈ IN;N−2k for any a ∈ M
(N)
k .

Proposition 7.1.

min
a∈M

(N)
k

gp(a) � min
b∈IN;N−2k

gp(b)

Proof. By the definition of gp (7.7), for any a ∈ M
(N)
k , we find

gp(a) � gp(a〈+φ〉).

However, from lemma 7.1, a〈+φ〉 ∈ IN;N−2k and the proposition is proved. �

Lemma 7.2. Let b∗ be the sequence which is obtained from a sequence b ∈ IN;N−2k by
replacing all the letters ‘φ’ with ‘b’ or ‘w’ arbitrarily. Then

b∗ ∈ �k
i=0M

(N)
i .

Proof. By the definition of IN;N−2k , no b-band in b can be adjacent to a w-band. If a φ-band
is in between two b-bands or two w-bands, it contains an even number of ‘φ’. On the other
hand, if a φ-band is in between a b-band and a w-band, it contains an odd number of ‘φ’.
Hence, by changing a ‘φ’ to a ‘b’ or a ‘w’, we can make the number of boundaries in b∗ at
most equal to that of ‘φ’. Since b ∈ IN;N−2k , it contains 2k ‘φ’. Hence b∗ has at most k bands
of ‘b’. �

Lemma 7.3.

min
a∈�k

i=0M
(N)
i

gp(a) � min
b∈IN;N−2k

gp(b)

Proof. Let p = (p1, p2, . . . , pN). For a b := (q1, q2, . . . , qN) ∈ IN;N−2k , we define
b〈−φ〉 := (q ′

1, q
′
2, . . . , q

′
N) as follows. If qi 	= φ, q ′

i = qi . If qi = φ and pi = 1, q ′
i = b, and

if qi = φ and pi = 0, q ′
i = w. Then, by the definition of g, gp(b) = gp(b〈−φ〉). Furthermore,

from lemma 7.2, b〈−φ〉 ∈ �k
i=0M

(N)
i . Hence

min
a∈�k

i=0M
(N)
i

gp(a) � min
b∈IN;N−2k

gp(b〈−φ〉)

= min
b∈IN;N−2k

gp(b). �
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Proposition 7.2. Let np be the number of blocks of consecutive ‘1’ in p. Then{
mina∈M

(N)
k

gp(a) < mina∈M
(N)
k−1

gp(a) for np � k

mina∈M
(N)
k

gp(a) > mina∈M
(N)
np

gp(a) for np < k.
(7.9)

Note that np is the number of solitons in the PBBS corresponding to p.

Proof. Suppose that a′
∗ = (q1, q2, . . . , qN) ∈ M

(N)
k−1 is the sequence which attains gp(a′

∗) =
mina∈M

(N)
k−1

gp(a). For np � k, there exists an entry pn in p which satisfies [qn, pn] = 1. Let

a′ = (q ′
1, q

′
2, . . . , q

′
N) be the sequence obtained from a′

∗ by changing some of the qn. Clearly
gp(a′) < gp(a′

∗). Furthermore: a′ belongs to M
(N)
k . Because a′ belongs to M

(N)
k−1 � M

(N)
k , by

construction, and a /∈ M
(N)
k−1 due to the definition of a′

∗, we have

min
a∈M

(N)
k

gp(a) < min
a∈M

(N)
k−1

gp(a) for np � k.

Since p has np sequences of consecutive ‘1’ (and ‘0’), if we define

a0 := p|0→b,1→w

we have that a0 ∈ M(N)
np

and gp(a0) = 0. Since a0 is the only bwφ sequence that does not
contain ‘φ’ and gives gp = 0, we have

min
a∈M

(N)
np

gp(a) < min
a∈M

(N)
k

gp(a) for k > np.

�

The following two corollaries are a direct consequence of this proposition and lemma 7.3.

Corollary 7.1. For k � np,

min
a∈M

(N)
k

gp(a) = min
a∈�k

i=0M
(N)
i

gp(a).

Corollary 7.2. For k � np,

min
a∈M

(N)
k

gp(a) � min
b∈IN;N−2k

gp(b).

Proposition 7.3. For k � np,

min
b∈IN;N−2k

gp(b) = min
a∈M

(N)
k

gp(a).

For k � np,

min
b∈IN;N−2k

gp(b) = min
a∈M

(N)
np

gp(a) = 0.

Proof. The former part follows from proposition 7.1 and corollary 7.2. For the latter part, we
consider a0 ∈ M(N)

np
in the proof of proposition 7.2. By changing some letters in a0 into ‘φ’,

we obtain a sequence belonging to IN;N−2k . Clearly it gives gp = 0. �

Remark 7.2. From (7.8), we have that for a 01 sequence p:

ue
[1]
k =

{
mina∈M

(N)
k

gp(a) for k � np,

mina∈M
(N)
np

gp(a) for k > np.
(7.10)
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00111011100100011110001101000000

Figure 6. An example of a block. The ‘1’ pointed at by vertical arrows are the components of the
largest soliton in the block.

In the discussion below, we need the notion of a block in p. Its definition and important
properties were explained in detail in [13]. We briefly review its definition.

For a 01 sequence p, we draw arc lines between 10 pairs which give the conserved
quantities p1 from the introduction. Then we draw arc lines between 10 pairs for p2 over the
arc lines drawn previously. We repeat this procedure until ps arc lines have been drawn for
the last 10 pairs over the other arc lines. Then we find several boundaries between ‘0’ and ‘1’
or ‘0’ and ‘0’ over which there is no arc line (see figure 6). A block in p is a 01 sequence
which is located between two successive boundaries, all the entries of which are connected by
arc lines.

Lemma 7.4. Suppose that a∗ = (q∗
1 , q∗

2 , . . . , q∗
N) ∈ M

(N)
k (k � np) satisfies

gp(a∗) = min
a∈M

(N)
k

gp(a).

If the nth entry of p, pn, does not belong to a block, pn = 0 and q∗
n = b.

Proof. By the definition of a block, an entry is ‘0’ when it does not belong to a block. Hence
pn must be ‘0’ and is in a sequence of consecutive ‘0’ between two blocks.

Suppose that q∗
n = w. We denote the w-band with q∗

n by w, and the corresponding
sequence in p by pw. If the right edge of pw belongs to a block, we define p∗

w ⊂ pw as the
sequence obtained from pw by eliminating the part belonging to the block. Otherwise we put
p∗

w = pw. The sequence p∗
w always has more ‘0’ than ‘1’, because a block contains the same

number of ‘0’ and ‘1’, and, when we cut a block into two sequences, the right sequence always
has more ‘0’ than ‘1’.

Now we define by a∗∗ the sequence obtained from a∗ by replacing all the ‘w’ corresponding
to p∗

w with ‘b’. Clearly a∗∗ ∈ M
(N)
k � M

(N)
k−1 and

gp(a∗∗) < gp(a∗).

By the definition of a∗, a∗∗ /∈ M
(N)
k and a∗∗ ∈ M

(N)
k−1. But this contradicts proposition 7.2.

Therefore the assumption q∗
n = w is wrong and q∗

n = b. �

Hereafter we explicitly introduce the system size (N) dependence of p, a, etc as p(N),

a(N), etc.

Proposition 7.4. Let p(n) = p1p2 · · · pn. There is at least one entry pi (i ∈ {1, 2, . . . , n})
which does not belong to a block. We define p(n)(i; j) := p1p2 · · · pi 00 · · · 0︸ ︷︷ ︸

j

pi+1 · · · pn.

Accordingly, for a sequence a(n)
∗ := a1a2 · · · an ∈ M

(N)
k , we define the new sequence a(n)

∗ (i; j)

by a(n)
∗ (i; j) := a1a2 · · · ai bb · · · b︸ ︷︷ ︸

j

ai+1 . . . an. If gp(n) (a(n)
∗ ) = mina(n)∈M

(n)
k

gp(n) (a(n)) then

gp(n)(i;j)(a
(n)
∗ (i; j)) = min

a(n+j)∈M
(n+j)

k

gp(n)(i;j)(a
(n+j)).
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Proof. Let a(n+j)
∗∗ ∈ M

(n+j)

k be the sequence which minimizes gp(n)(i;j), i.e.,

gp(n)(i;j)(a
(n+j)
∗∗ ) = min

a(n+j)∈M
(n+j)

k

gp(n)(i;j)(a
(n+j)).

From lemma 7.4, a(n+j)
∗∗ is expressed as a(n+j)

∗∗ = a′
1a

′
2 · · · a′

i bb · · · b︸ ︷︷ ︸
j

a′
i+1 . . . a′

n. (Note that

a′
i = b.) If we define ā(n)

∗∗ := a′
1a

′
2 · · · a′

ia
′
i+1 . . . a′

n, we find that

gp(n)(i;j)(a
(n+j)
∗∗ ) = gp(n) (ā(n)

∗∗ ) � gp(n) (a(n)
∗ ).

However, by the definition of a(n)
∗ (i; j),

gp(n)(i;j)(a
(n+j)
∗∗ ) � gp(n)(i;j)(a

(n)
∗ (i; j)) = gp(n) (a(n)

∗ ).

Therefore gp(n)(i;j)(a
(n)
∗ (i; j)) = gp(n)(i;j)(a

(n+j)
∗∗ ).

�

Lemma 7.5. For k � np, we assume that a(N)
∗ ∈ M

(N)
k satisfies

gp(N) (a(N)
∗ ) = min

a(N)∈M
(N)
k

gp(N) (a(N)).

Suppose that the 01-sequence p(N) has evolved into p(N)

(T ) after T time steps according to the
time evolution rule for the PBBS. Then

gp(N)

(T )

(
a(N)

∗(T )

) = gp(N) (a(N)
∗ ).

where a(N)

∗(T ) ∈ M
(N)
k denotes the sequence which satisfies

gp(N)

(T )

(
a(N)

∗(T )

) = min
a(N)∈M

(N)
k

gp(N)

(T )
(a(N)).

Proof. From (7.10), gp(N) (a(N)
∗ ) is a conserved quantity in time. �

The following proposition is immediately obtained from proposition 7.3 and lemma 7.5.

Proposition 7.5. Let p(N), a(N)
∗ , p(N+j)

(T ) and a(N+j)

∗(T ) be the sequences given in proposition 7.3
and lemma 7.5. Then we have

gp(N) (a(N)
∗ ) = gp(N+j)

(T )

(
a(N+j)

∗(T )

)
Lemma 7.6 ([13]). Let np be the number of solitons in p(N). We denote their lengths by
L1, L2, . . . , Lnp

(
L1 � L2 � · · · � Lnp

)
. Then, for sufficiently large j , there exist time steps

T such that p(N+j)

(T ) satisfies the following conditions.

1. p(N+j)

(T ) consists of s bands of consecutive ‘1’ and the same number of bands of ‘0’.
2. The length of the ith band of ‘1’ is Li (i = 1, 2, . . . , np).

Theorem 7.1. Let S be the number of ‘1’ in p(N). For a p(N) with np solitons,

ue
[1]
k = S −

k∑
i=1

Li for k � np (7.11)

and ue
[1]
k = 0 for k � np. Here Li is the length of the ith soliton.
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right part left part

Figure 7. The left part and the right part of the block given in figure 6. Two smaller blocks are
left when we eliminate the largest arc which connects the 10 pair at the edges of the block.

Proof. We assume that j and T are the positive integers given in proposition 7.5. Let
a(N+j)

∗(T ) ∈ M
(N+j)

k be the sequence which satisfies

gp(N+j)

(T )

(
a(N+j)

∗(T )

) = min
a(N+j)∈M

(N+j)

k

gp(N+j)

(T )
(a(N+j)).

From lemma 7.6, there are np bands of ‘1’ with lengths L1, L2, . . . , Lnp

(
L1 � L2 � · · · �

Lnp

)
. Since [w, 1] = 0 and [b, 1] = 1, k w-bands must correspond to the sequences of ‘1’

with lengths L1, L2, . . . , Lk for k � np. Hence we find

gp(N+j)

(T )

(
a(N+j)

∗(T )

) = S −
k∑

i=1

Li.

Then proposition 7.5 and (7.10) prove the theorem. �

Finally we give a method which can be used to construct a(N)
∗ ∈ Mk which minimizes

gp(N) for a p(N). For this purpose, we need some properties of blocks.

Definition 7.1 ([13]). We divide a block into two parts. Let p be the position of the rightmost
‘1’ which belongs to the largest soliton in the block. The right part of the block is the 01
sequence which is located on the right-hand side of p. (The ‘1’ at p does not belong to the
right part.) The remainder is called the left part of the block.

Lemma 7.7 ([13]).

1. A block contains solitons. When the length of the largest soliton in it is L, the left part of
the block has L more ‘1’ than ‘0’, and the right part has L more ‘0’ than ‘1’.

2. The edges of both the right part and the left part of a block belong to 10 pairs whose ‘1’
constitute the largest soliton in the block.

3. If we eliminate these 10 pairs, the remainders constitute disjoint blocks in the left part
and the right part respectively.

We put p(N) := (p1, p2, . . . , pN) and assume that it has np solitons. Each soliton
constitutes a block. We denote the block of the ith largest soliton by pi (⊂ p(N)). Now we
define sequences of letters ‘b’ and ‘w’, a(i) ∈ M

(N)
i (i = 0, 1, 2, . . . , k) (k � N) as follows.

1. a(0) = bbb · · · b︸ ︷︷ ︸
N

.

2. We replace the ‘b’ in the part of a(0) which corresponds to the left part of p1 with ‘w’. We
denote the new sequence by a(1).
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3. From lemma 7.7, we see the part of a(1) which corresponds to p2 consists of either only
‘b’ or only ‘w’. If it consists only of ‘b’, then we replace the ‘b’ which corresponds to
the left part of p2 with ‘w’. Otherwise we replace the ‘w’ which corresponds to the right
part of p2 with ‘b’. We denote the new sequence by a(2).

4. Repeat the above procedure to obtain a(i+1) from a(i) and pi+1 (i = 2, 3, . . . , k − 1).

We then have the following result for a(N)
∗ :

Proposition 7.6. In the above notation, we have a(k) = a(N)
∗ .

Proof. From lemma 7.7, we easily find a(i) ∈ M
(N)
i and gp(N) (a(i)) = S − ∑i

j=1 Lj . �

8. Concluding remarks

In this paper, we showed that the generalized PBBSs are obtained from a reduction of the ndKP
equation through ultradiscretization. Using the Lax representation of the ndKP equation, we
have shown a formula to calculate the conserved quantities of the PBBS and we gave an explicit
form of the conserved quantities in the case of only one kind of ball. We also proved that these
conserved quantities coincide with those obtained previously when all the box capacities are
restricted to one.

For the simplest PBBS, the formula used to calculate the fundamental cycle is explicitly
obtained using the conserved quantities and some rescaling properties of the states. The
formula reveals important properties of the PBBS such as the integrable nature of the PBBS
as a dynamical system, combinatorial features, and number theoretical aspects related to the
Riemann hypothesis. To investigate similar properties for the generalized PBBS is one of the
important future problems.
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